Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br Dent J ; 235(11): 887-891, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38066152

RESUMO

This narrative review aims to study the accuracy of different intra-oral scanner (IOS) devices already available on the market. The accuracy emerged during in vitro, in vivo and ex vivo studies made with IOS devices during the scan of a full arch implant rehabilitation that have been analysed to evaluate which device may be the most suitable in this clinical situation. The literature review was performed by searching topics and keywords using the PubMed and Medline databases, for example, 'digital workflow', 'full arch', 'full arch implant rehabilitation' and 'accuracy of IOS'. Inclusion and exclusion criteria for studies were: correct IMRAD (introduction, methods, results and discussion) structure; article with clear and detailed objectives; consistency of the articles with the purpose of the review; two-year range from the year of publication of the article; reproducible materials and methods; and correct follow-up. Most of the intra-oral scanners employed in vitro provided acceptable accuracy (below a threshold of 150 µm). The main parameters identified for their influence on precision were interim plant distance, body scan design, scanning pattern and operator experience. Even though literature is limited, significant differences emerged between the different models of intra-oral scanners evaluated in the studies considered within this review.


Assuntos
Implantes Dentários , Imageamento Tridimensional , Técnica de Moldagem Odontológica , Desenho Assistido por Computador , Modelos Dentários , Arco Dental
2.
Pharmaceutics ; 15(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38140066

RESUMO

Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.

3.
Biology (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998003

RESUMO

In recent years, the enormous demand for swabs for clinical use has promoted their relevance and, consequently, brought the environmental issues due to their single use and lack of biodegradability to the attention of the healthcare industry. Swabs consist of a stick that facilitates their easy handling and manoeuvrability even in complex districts and an absorbent tip designed to uptake and release biological samples. In this study, we focused on the fabrication of an innovative biodegradable poly(vinyl alcohol) (PVA) nanofiber swab tip using the electrospinning technique. The innovative swab tip obtained showed comparable uptake and release capacity of protein and bacterial species (Pseudomonas aeruginosa and Staphylococcus aureus) with those of the commercial foam-type swab. In this way, the obtained swab can be attractive and suitable to fit into this panorama due to its low-cost process, easy scalability, and good uptake and release capabilities.

4.
Cell Rep Med ; 4(10): 101235, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852177

RESUMO

The rising prevalence of obesity and metabolic disorders worldwide highlights the urgent need to find new long-term and clinically meaningful weight-loss therapies. Here, we evaluate the therapeutic potential and the mechanism of action of a biomimetic cellulose-based oral superabsorbent hydrogel (OSH). Treatment with OSH exerts effects on intestinal tissue and gut microbiota composition, functioning like a protective dynamic exoskeleton. It protects from gut barrier permeability disruption and induces rapid and consistent changes in the gut microbiota composition, specifically fostering Akkermansia muciniphila expansion. The mechanobiological, physical, and chemical structures of the gel are required for A. muciniphila growth. OSH treatment induces weight loss and reduces fat accumulation, in both preventative and therapeutic settings. OSH usage also prevents liver steatosis, immune infiltration, and fibrosis, limiting the progression of non-alcoholic fatty liver disease. Our work shows the potential of using OSH as a non-systemic mechanobiological approach to treat metabolic syndrome and its comorbidities.


Assuntos
Exoesqueleto Energizado , Hepatopatia Gordurosa não Alcoólica , Humanos , Hidrogéis/uso terapêutico , Biomimética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/prevenção & controle , Obesidade/tratamento farmacológico
5.
Bioengineering (Basel) ; 10(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37892852

RESUMO

The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.

6.
J Fungi (Basel) ; 9(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755026

RESUMO

Biopolymer-based formulations show great promise in enhancing the effectiveness of entomopathogenic fungi as bioinsecticides. Chitosan and starch, among other biopolymers, have been utilized to improve spore delivery, persistence, and adherence to target insects. These formulations offer advantages such as target specificity, eco-friendliness, and sustainability. However, challenges related to production costs, stability, and shelf life need to be addressed. Recently, biomimetic lure and kill approaches based on biopolymers offer cost-effective solutions by leveraging natural attractants. Further research is needed to optimize these formulations and overcome challenges. Biopolymer-based formulations have the potential to revolutionize pest control practices, providing environmentally friendly and sustainable solutions for agriculture.

7.
Genes (Basel) ; 14(9)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37761809

RESUMO

The goal of regenerative medicine is to achieve tissue regeneration. In the past, commonly used techniques included autologous or allogeneic transplantation and stem cell therapy, which have limitations, such as a lack of donor sites in the case of autologous transplantation and the invasiveness of stem cell harvesting. In recent years, research has, therefore, focused on new and less invasive strategies to achieve tissue regeneration. A step forward in this direction has been made with the development of autologous platelet concentrates (APCs), which are derived from the patient's own blood. They can be classified into three generations: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factors (CGFs). These APCs have different structural characteristics, depending on the distinctive preparation method, and contain platelets, leukocytes, and multiple growth factors, including those most involved in regenerative processes. The purpose of this review is to clarify the most used techniques in the field of regenerative medicine in recent years, comparing the different types of APCs and analyzing the preparation protocols, the composition of the growth factors, the level of characterization achieved, and their clinical applications to date.


Assuntos
Plasma Rico em Plaquetas , Medicina Regenerativa , Humanos , Plaquetas , Leucócitos , Transplante de Células-Tronco
8.
ACS Omega ; 8(23): 20708-20713, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332801

RESUMO

Water pollution is a major concern in our modern age. The contamination of water, as a valuable and often limited resource, affects both the environment and human health. Industrial processes such as food, cosmetics, and pharmaceutical production also contribute to this problem. Vegetable oil production, for example, generates a stable oil/water emulsion containing 0.5-5% oil, which presents a difficult waste disposal issue. Conventional treatment methods based on aluminum salts generate hazardous waste, highlighting the need for green and biodegradable coagulant agents. In this study, the efficacy of commercial chitosan, a natural polysaccharide derived from chitin deacetylation, has been evaluated as a coagulation agent for vegetable oil emulsions. The effect of commercial chitosan was assessed in relation to different surfactants (anionic, cationic, and nonpolar) and pH levels. The results demonstrate that chitosan is effective at concentrations as low as 300 ppm and can be reused, providing a cost-effective and sustainable solution for oil removal. The flocculation mechanism relies on the desolubilization of the polymer, which acts as a net to entrap the emulsion, rather than solely relying on electrostatic interactions with the particles. This study highlights the potential of chitosan as a natural and ecofriendly alternative to conventional coagulants for the remediation of oil-contaminated water.

9.
Biology (Basel) ; 12(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37106729

RESUMO

The application of scaffolding materials together with stem cell technologies plays a key role in tissue regeneration. Therefore, in this study, CGF (concentrated growth factor), which represents an autologous and biocompatible blood-derived product rich in growth factors and multipotent stem cells, was used together with a hydroxyapatite and silicon (HA-Si) scaffold, which represents a very interesting material in the field of bone reconstructive surgery. The aim of this work was to evaluate the potential osteogenic differentiation of CGF primary cells induced by HA-Si scaffolds. The cellular viability of CGF primary cells cultured on HA-Si scaffolds and their structural characterization were performed by MTT assay and SEM analysis, respectively. Moreover, the matrix mineralization of CGF primary cells on the HA-Si scaffold was evaluated through Alizarin red staining. The expression of osteogenic differentiation markers was investigated through mRNA quantification by real-time PCR. We found that the HA-Si scaffold was not cytotoxic for CGF primary cells, allowing their growth and proliferation. Furthermore, the HA-Si scaffold was able to induce increased levels of osteogenic markers, decreased levels of stemness markers in these cells, and the formation of a mineralized matrix. In conclusion, our results suggest that HA-Si scaffolds can be used as a biomaterial support for CGF application in the field of tissue regeneration.

10.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677887

RESUMO

In the present study, we have produced a sodium carboxymethylcellulose (CMC) hydrogel from a bacterial cellulose etherification reaction with chloroacetic acid in an alkaline medium. Bacterial cellulose (BC) was synthesized via economical and environmentally friendly methods using the Gluconacetobacter xylinus bacterium. After purification, freeze-drying, and milling, BC microparticles were dispersed in NaOH solution for different time periods before the etherification reaction. This has allowed the understanding of the alkalinization effect on BC modification. All synthesized CMC were soluble in water, and FTIR and XRD analyses confirmed the etherification reaction. The bath of BC in NaOH solution affects both molecular weight and degree of substitution. SEM analysis revealed the change of BC microstructure from fibrous-like to a smooth, uniform structure. The CMC-0 h allowed the production of crosslinked hydrogel after dehydrothermal treatment. Such hydrogel has been characterized rheologically and has shown a water absorption of 35 times its original weight. The optimization of the CMC produced from BC could pave the way for the production of ultrapure hydrogel to be applied in the healthcare and pharmaceutical industry.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Carboximetilcelulose Sódica/química , Celulose/química , Hidróxido de Sódio , Água
11.
Gels ; 8(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36547314

RESUMO

Cellulose is one of the most ubiquitous and naturally abundant biopolymers found on Earth and is primarily obtained from plants and other biomass sources [...].

12.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499489

RESUMO

Edentulism is the condition of having lost natural teeth, and has serious social, psychological, and emotional consequences. The need for implant services in edentulous patients has dramatically increased during the last decades. In this study, the effects of concentrated growth factor (CGF), an autologous blood-derived biomaterial, in improving the process of osseointegration of dental implants have been evaluated. Here, permeation of dental implants with CGF has been obtained by using a Round up device. These CGF-coated dental implants retained a complex internal structure capable of releasing growth factors (VEGF, TGF-ß1, and BMP-2) and matrix metalloproteinases (MMP-2 and MMP-9) over time. The CGF-permeated implants induced the osteogenic differentiation of human bone marrow stem cells (hBMSC) as confirmed by matrix mineralization and the expression of osteogenic differentiation markers. Moreover, CGF provided dental implants with a biocompatible and biologically active surface that significantly improved adhesion of endothelial cells on CGF-coated implants compared to control implants (without CGF). Finally, data obtained from surgical interventions with CGF-permeated dental implants presented better results in terms of optimal osseointegration and reduced post-surgical complications. These data, taken together, highlight new and interesting perspectives in the use of CGF in the dental implantology field to improve osseointegration and promote the healing process.


Assuntos
Implantes Dentários , Osteogênese , Humanos , Células Endoteliais , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osseointegração , Propriedades de Superfície , Titânio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
13.
Acta Trop ; 234: 106627, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914564

RESUMO

Insects, ticks, and mites represent a threat to animal health globally, mainly due to their role as vectors of pathogens. Among the most important diseases, those transmitted by mosquitoes (e.g., malaria and arboviral infections) and ticks (e.g., Lyme borreliosis, babesiosis, and viral haemorrhagic fever) have a huge impact on human health. The principal methods available for reducing the public health burden of most vector-borne diseases are vector-based intervention relying to insecticides and acaricides. However, the use of these products is challenged by the introduction of invasive species, the quick development of physiological insecticide and acaricide resistance, and their non-target effects on human health and environment. In this scenario, insecticide/acaricide-free control approaches based on the employment of entomopathogenic fungi (EPFs) are currently considered a promising tool in Integrated Pest/Vector Management, even if their large-scale use is still limited. In this article, we provide an overview on current knowledge about the role of EPFs for mosquito and tick management to assess solutions improving the delivery and efficacy of EPFs in the field. Laboratory research provided solid evidence that EPFs represent a next-generation control tool to manage mosquito and tick populations. However, the viability, infectivity, and persistence of fungal spores under field conditions are still inadequate. Herein we also discuss the development and optimization of EPF-based lure and kill approaches through biopolymers to improve cost-competitive, safety and eco-friendly pest and vector control tools.


Assuntos
Acaricidas , Culicidae , Inseticidas , Carrapatos , Animais , Fungos , Humanos , Inseticidas/farmacologia , Controle de Mosquitos , Mosquitos Vetores
14.
Bioengineering (Basel) ; 9(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35877317

RESUMO

Pest management is looking for green and cost-effective innovative solutions to control tiger mosquitoes and other pests. By using biomimetic principles and biocompatible/biodegradable biopolymers, it could be possible to develop a new approach based on substrates that selectively attract insects by reproducing specific natural environmental conditions and then kill them by hosting and delivering a natural biopesticide or through mechanical action (biomimetic lure and kill approach, BL&K). Such an approach can be theoretically specialized against tiger mosquitoes (BL&K-TM) by designing hydrogels to imitate the natural oviposition site's conditions to employ them inside a lure and kill ovitraps as a biomimetic oviposition substrate. In this work, the hydrogels have been prepared to prove the concept. The study compares lab/on-field oviposition between standard substrates (absorbing paper/masonite) and a physical and chemically crosslinked hydrogel composition panel. Then the best performing is characterized to evaluate a correlation between the hydrogel's properties and oviposition. Tests identify a 2-Hydroxyethylcellulose (HEC)-based physical hydrogel preparation as five times more attractive than the control in a lab oviposition assay. When employed on the field in a low-cost cardboard trap, the same substrate is seven times more capturing than a standard masonite ovitrap, with a duration four times longer.

15.
Parasit Vectors ; 15(1): 79, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248154

RESUMO

BACKGROUND: Pest management has been facing the spread of invasive species, insecticide resistance phenomena, and concern for the impact of chemical pesticides on human health and the environment. It has tried to deal with them by developing technically efficient and economically sustainable solutions to complement/replace/improve traditional control methods. The renewal has been mainly directed towards less toxic pesticides or enhancing the precision of their delivery to reduce the volume employed and side effects through lure-and-kill approaches based on semiochemicals attractants. However, one of the main pest management problems is that efficacy depends on the effectiveness of the attractant system, limiting its successful employment to semiochemical stimuli-responsive insects. Biomaterial-based and bioinspired/biomimetic solutions that already guide other disciplines (e.g., medical sciences) in developing precision approaches could be a helpful tool to create attractive new strategies to liberate precision pest management from the need for semiochemical stimuli, simplify their integration with bioinsecticides, and foster the use of still underemployed solutions. APPROACH PROPOSED: We propose an innovative approach, called "biomimetic lure-and-kill". It exploits biomimetic principles and biocompatible/biodegradable biopolymers (e.g., natural hydrogels) to develop new substrates that selectively attract insects by reproducing specific natural environmental conditions (biomimetic lure) and kill them by hosting and delivering a natural biopesticide or through mechanical action. Biomimetic lure-and-kill-designed substrates point to provide a new attractive system to develop/improve and make more cost-competitive new and conventional devices (e.g. traps). A first example application is proposed using the tiger mosquito Aedes albopictus as a model. CONCLUSIONS: Biomaterials, particularly in the hydrogel form, can be a useful tool for developing the biomimetic lure-and-kill approach because they can satisfy multiple needs simultaneously (e.g., biomimetic lure, mechanical lethality, biocompatibility, and bioinsecticide growth). Such an approach might be cost-competitive, and with the potential for applicability to several pest species. Moreover, it is already technically feasible, since all the technologies necessary to design and configure materials with specific characteristics are already available on the market.


Assuntos
Aedes , Controle de Mosquitos , Animais , Biomimética , Biopolímeros/farmacologia , Humanos , Mosquitos Vetores , Engenharia Tecidual
17.
Sci Rep ; 11(1): 21394, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725434

RESUMO

In the treatment of obesity, nutritional and behavioral modifications are difficult to implement and maintain. Since vegetable consumption is a fundamental part of many dietary interventions and daily nutrient requirements, we developed a novel cellulose-based superabsorbent hydrogel (CB-SAH) platform, inspired by the composition and mechanical properties of raw vegetables, as a mechanobiological therapy. The CB-SAHs properties were studied in a simulated gastrointestinal environment, while their impact on gut tissue was investigated by an ex vivo organ culture (EVOC) model. Functional fibers and raw vegetables were used as reference. CB-SAHs demonstrated orders of magnitude higher elasticity in comparison to the tested functional fibers, however performed similar to the tested raw vegetables. Notably, the biomimetic CB-SAHs with elasticity levels similar to raw vegetables showed benefits in preserving and regulating the gut tissue in the EVOC model. Non-systemic oral mechanotherapeutics based on this technology were advanced through clinical studies, with a first product cleared as an aid for weight management in the US and Europe.


Assuntos
Celulose/farmacologia , Hidrogéis/farmacologia , Obesidade/terapia , Adsorção , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Biomimética , Celulose/análogos & derivados , Elasticidade , Humanos , Hidrogéis/química , Masculino , Camundongos Endogâmicos C57BL , Verduras/química
18.
Materials (Basel) ; 14(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832344

RESUMO

Magnesium (Mg)- and silicon (Si)-substituted hydroxyapatite (HA) scaffolds were synthesized using the sponge replica method. The influence of Mg2+ and SiO44- ion substitution on the microstructural, mechanical and biological properties of HA scaffolds was evaluated. All synthesized scaffolds exhibited porosity >92%, with interconnected pores and pore sizes ranging between 200 and 800 µm. X-ray diffraction analysis showed that ß-TCP was formed in the case of Mg substitution. X-ray fluorescence mapping showed a homogeneous distribution of Mg and Si ions in the respective scaffolds. Compared to the pure HA scaffold, a reduced grain size was observed in the Mg- and Si-substituted scaffolds, which greatly influenced the mechanical properties of the scaffolds. Mechanical tests revealed better performance in HA-Mg (0.44 ± 0.05 MPa), HA-Si (0.64 ± 0.02 MPa) and HA-MgSi (0.53 ± 0.01 MPa) samples compared to pure HA (0.2 ± 0.01 MPa). During biodegradability tests in Tris-HCl, slight weight loss and a substantial reduction in mechanical performances of the scaffolds were observed. Cell proliferation determined by the MTT assay using hBMSC showed that all scaffolds were biocompatible, and the HA-MgSi scaffold seemed the most effective for cell adhesion and proliferation. Furthermore, ALP activity and osteogenic marker expression analysis revealed the ability of HA-Si and HA-MgSi scaffolds to promote osteoblast differentiation.

19.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445573

RESUMO

Concentrated Growth Factors (CGF) represent new autologous (blood-derived biomaterial), attracting growing interest in the field of regenerative medicine. In this study, the chemical, structural, and biological characterization of CGF was carried out. CGF molecular characterization was performed by GC/MS to quantify small metabolites and by ELISA to measure growth factors and matrix metalloproteinases (MMPs) release; structural CGF characterization was carried out by SEM analysis and immunohistochemistry; CGF has been cultured, and its primary cells were isolated for the identification of their surface markers by flow cytometry, Western blot, and real-time PCR; finally, the osteogenic differentiation of CGF primary cells was evaluated through matrix mineralization by alizarin red staining and through mRNA quantification of osteogenic differentiation markers by real-time PCR. We found that CGF has a complex inner structure capable of influencing the release of growth factors, metabolites, and cells. These cells, which could regulate the production and release of the CGF growth factors, show stem features and are able to differentiate into osteoblasts producing a mineralized matrix. These data, taken together, highlight interesting new perspectives for the use of CGF in regenerative medicine.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osteoblastos/citologia , Osteogênese , Células-Tronco/citologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
20.
Pharmaceutics ; 13(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946931

RESUMO

Blood-derived concentrated growth factors (CGFs) represent a novel autologous biomaterial with promising applications in regenerative medicine. Angiogenesis is a key factor in tissue regeneration, but the role played by CGFs in vessel formation is not clear. The purpose of this study was to characterize the angiogenic properties of CGFs by evaluating the effects of its soluble factors and cellular components on the neovascularization in an in vitro model of angiogenesis. CGF clots were cultured for 14 days in cell culture medium; after that, CGF-conditioned medium (CGF-CM) was collected, and soluble factors and cellular components were separated and characterized. CGF-soluble factors, such as growth factors (VEGF and TGF-ß1) and matrix metalloproteinases (MMP-2 and -9), were assessed by ELISA. Angiogenic properties of CGF-soluble factors were analyzed by stimulating human cultured endothelial cells with increasing concentrations (1%, 5%, 10%, or 20%) of CGF-CM, and their effect on cell migration and tubule-like formation was assessed by wound healing and Matrigel assay, respectively. The expression of endothelial angiogenic mediators was determined using qRT-PCR and ELISA assays. CGF-derived cells were characterized by immunostaining, qRT-PCR and Matrigel assay. We found that CGF-CM, consisting of essential pro-angiogenic factors, such as VEGF, TGF-ß1, MMP-9, and MMP-2, promoted endothelial cell migration; tubule structure formation; and endothelial expression of multiple angiogenic mediators, including growth factors, chemokines, and metalloproteinases. Moreover, we discovered that CGF-derived cells exhibited features such as endothelial progenitor cells, since they expressed the CD34 stem cell marker and endothelial markers and participated in the neo-angiogenic process. In conclusion, our results suggest that CGFs are able to promote endothelial angiogenesis through their soluble and cellular components and that CGFs can be used as a biomaterial for therapeutic vasculogenesis in the field of tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...